- Visibility 75 Views
- Downloads 55 Downloads
- Permissions
- DOI 10.18231/j.ijpp.30920.1758777742
-
CrossMark
- Citation
Targeting aortic elasticity: A promising therapeutic avenue in congestive heart failure and cardiac pumping disorders
Heart failure (HF), including both preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF) phenotypes, remains a growing global health crisis, affecting over 64 million individuals and contributing significantly to morbidity, mortality, and healthcare burden. Although contemporary HF therapies focus largely on myocardial function and neurohormonal modulation, accumulating evidence suggests that the vascular system-particularly the elastic properties of the aorta-plays a crucial and modifiable role in disease progression. Aortic elasticity is central to maintaining optimal ventriculo-arterial coupling, damping pulsatile load, and ensuring coronary perfusion during diastole. However, age-related changes, hypertension, diabetes, and metabolic syndrome promote vascular stiffening, which increases left ventricular (LV) afterload, exacerbates systolic dysfunction, and impairs diastolic relaxation.
Aortic stiffness, quantified by pulse wave velocity (PWV), has emerged as an independent predictor of cardiovascular events and HF hospitalization. Pharmacologic agents that preserve or restore aortic compliance-including RAAS blockers, calcium channel blockers, statins, SGLT2 inhibitors, soluble guanylate cyclase stimulators, AGE cross-link breakers, and GLP-1 receptor agonists-have demonstrated encouraging vascular benefits in both preclinical and clinical studies. Novel therapies targeting extracellular matrix remodeling, endothelial dysfunction, and oxidative stress hold promise in transforming our approach to HF therapy by shifting focus beyond cardiac contractility to vascular health.
This narrative review comprehensively examines the physiology of aortic elasticity, the pathophysiologic mechanisms linking vascular stiffness to heart failure, and therapeutic strategies aimed at reversing or mitigating arterial stiffening. We highlight key trials, mechanistic insights, and potential research directions to promote integration of vascular-targeted therapies in HF management. Emphasizing aortic compliance as a therapeutic goal may help close the current gap in HFpEF treatment, improve long-term outcomes, and redefine cardiovascular care paradigms.
References
- Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the american college of cardiology/ american heart association joint committee on clinical practice guidelines. Circulation. 2022;145(18):e895-e1032.
- Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–605.
- Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32(6):670–9.
- Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol (1985). 2008;105(5):1652–60.
- Vlachopoulos C, Nichols WW, O’Rourke M, Wilmer W. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. 6th ed. London: CRC Press; 2011.
- Lakatta EG and Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation. 2003;107(1):139–46.
- Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43.
- Safar ME, London GM. Therapeutic studies and arterial stiffness in hypertension: recommendations of the European Society of Hypertension. The Clinical Committee of Arterial Structure and Function. Working group on vascular structure and function of the european society of hypertension. J Hypertens. 2000;18(11):1527–35.
- Kim HL, Jo SH. Arterial stiffness and heart failure with preserved ejection fraction. J Korean Med Sci. 2024;39(23):e195.
- Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol Metab. 2013;3(2):94-108.
- Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension. 2005;46(3):454–62.
- Chirinos JA. Arterial stiffness: basic concepts and measurement techniques. J Cardiovasc Transl Res. 2012;5(3):243–55. Menon and Kumar / Indian Journal of Pharmacy and Pharmacology 2025;12(3):129136 135
- Kass DA. Ventricular arterial stiffening: integrating the pathophysiology. Hypertension. 2005;46(1):185–93.
- Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting–enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342(3):145–53.
- Mahmud A, Feely J. Arterial stiffness is related to systemic inflammation in essential hypertension. Hypertension. 2005;46(5):1118–22.
- Dengel DR, Pratley RE, Hagberg JM, Goldberg AP. Impaired insulin sensitivity and maximal responsiveness in older hypertensive men. Hypertension. 1994;23(3):320-4.
- Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113(9):1213–25.
- Wang KL, Cheng HM, Sung SH, Chuang SY, Li CH, Spurgeon HA, et al. Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: a community- based study. Hypertension. 2010;55(3):799–805.
- Morgan TO, Anderson A, MacInnis RJ, et al. Effect of different antihypertensive drug classes on central aortic pressure. Am J Hypertens. 2004;17(2):118–23.
- Nissen SE, Tuzcu EM, Libby P, Thompson PD, Ghali M, Garza D, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study. JAMA. 2004;292(18):2217–25.
- Raison J, Rudnichi A, Safar ME. Effects of atorvastatin on aortic pulse wave velocity in patients with hypertension and hypercholesterolaemia: a preliminary study. J Hum Hypertens. 2002;16(10):705–10
- Alidadi M, Montecucco F, Jamialahmadi T, Al-Rasadi K, Johnston TP, Sahebkar A. Beneficial Effect of Statin Therapy on Arterial Stiffness. Biomed Res Int. 2021;2021:5548310.
- Upala S, Wirunsawanya K, Jaruvongvanich V, Sanguankeo A. Effects of statin therapy on arterial stiffness: A systematic review and meta-analysis of randomized controlled trial. Int J Cardiol. 2017;227:338–41.
- Sever PS, Dahlöf B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Drugs. 2004;64(2):43–60.
- Fitchett DH, Leiter LA, Goodman SG, Langer A. Lower is better: implications of the Treating to New Targets (TNT) study for Canadian patients. Can J Cardiol. 2006;22(10):835-9.
- Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180-93.
- Solini A, Giannini L, Seghieri M, Vitolo E, Taddei S, Ghiadoni L, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2017;16(1):138.
- Lopez MDCA, Lax A, Vicente AH, Guillen ES, Hernandez- Martinez A, Palacio MJFD, et al. Empagliflozin improves post- infarction cardiac remodeling through GTP enzyme cyclohydrolase 1 and irrespective of diabetes status. Sci Rep. 2020;10(1):13553.
- Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72.
- Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.
- McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.
- Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.
- Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J , Hernandez AF, Butler J, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382(20):1883–93.
- Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CSP, Maggioni AP, et al. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES- REDUCED randomized trial. JAMA. 2015;314(21):2251–62.
- Pieske B, Maggioni AP, Lam CSP, Pieske-Kraigher E, Filippatos G, Butler J, et al. Vericiguat in patients with worsening heart failure with preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017;38(15):1119–27.
- Cheng HS, Ton SH, Kadir KA. Therapeutic agents targeting the AGE-RAGE axis for the treatment of diabetes and cardiovascular disease: a review of clinical evidence. Clin Diabetes Res. 2017;1(1):16–34.
- Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, et al. An advanced glycation endproduct crosslink breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci U S A. 2000;97(6):2809–13.
- Kass DA, Shapiro EP, Kawaguchi M, Capriotti AR, Scuteri A, deGroof RC, et al. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation. 2001;104(13):1464–70.
- Wolffenbuttel BH, Boulanger CM, Crijns FR, Huijberts MS, Poitevin P, Swennen GN, et al. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci U S A. 1998;95(8):4630–4.
- Steppan J, Tran H, Benjo AM, Pellakuru L, Barodka V, Ryoo S, et al. Alagebrium in combination with exercise ameliorates age-associated ventricular and vascular stiffness. Exp Gerontol. 2012;47(8):565–72.
- Nystrom T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahrén B, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287(6):E1209–15.
- Baylan U, Korn A, Emmens RW, Schalkwijk CG, Niessen HWM, Krijnen PAJ, et al. Liraglutide treatment attenuates inflammation markers in the cardiac, cerebral and renal microvasculature in streptozotocin-induced diabetic rats. Eur J Clin Invest. 2022;52(9):1–11.
- Lambadiari V, Pavlidis G, Kousathana F, Varoudi M, Vlastos D, Maratou E, et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc Diabetol . 2018;17(1):1–12. doi: 10.1186/s12933-017-0646-z.
- Zieman SJ, Kass DA. Advanced glycation endproduct crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs. 2004;64(5):459–70.
- Shigiyama F, Kumashiro N, Miyagi M, Ikehara K, Kanda E, Uchino H, et al. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc Diabetol. 2017; 16(1):1–12.
- Uthman L, Homayr A, Juni RP, Spin EL, Kerindongo R, Boomsma M, et al. Empagliflozin and Dapagliflozin reduce ROS generation and restore NO Bioavailability in tumor necrosis factor α-stimulated human coronary arterial endothelial cells. Cell Physiol Biochem . 2019;53(5):865–86.
- Ikonomidis I, Pavlidis G, Thymis J, Birba D, Kalogeris A, Kousathana F, et al. Effects of glucagon-like peptide-1 receptor Menon and Kumar / Indian Journal of Pharmacy and Pharmacology 2025;12(3):129136 136 agonists, sodium-glucose cotransporter-2 inhibitors, and their combination on endothelial glycocalyx, arterial function, and myocardial work index in patients with type 2 diabetes mellitus after 12-month treatment. J Am Heart Assoc. 2020; 9(9):1–21.
- Gaspari T, Liu H, Welungoda I, Hu Y, Widdop RE, Knudsen LB, et al. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE−/− mouse model. Diab Vasc Dis Res. 2011;8(2):117–24.
- Markl M, Harloff A, Bley TA, Zaitsev M, Jung B, Weigang E, et al. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging. 2007;25(4):824–31.
- Hope TA, Markl M, Wigström L, Alley MT, Miller DC, Herfkens RJ. Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J Magn Reson Imaging. 2007;26(6):1471–9.
- Doltra A, Stawowy P, Dietrich T, Schneeweis C, Fleck E, Kelle S. Magnetic resonance imaging of cardiovascular fibrosis and inflammation: from clinical practice to animal studies and back. Biomed Res Int. 2013;2013:676489:1–10. doi: 10.1155/2013/676489.
- Tanaka H, DeSouza CA, Seals DR. Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol. 1998;18(1):127–32. Cite this article: Menon AS, Kumar K. Targeting aortic elasticity: A promising therapeutic avenue in congestive heart failure and cardiac pumping disorders. Indian J Pharma Pharmacol. 2025;12(3):129–136
How to Cite This Article
Vancouver
Menon AS, Kumar K. Targeting aortic elasticity: A promising therapeutic avenue in congestive heart failure <span style="font-size: 1rem;">and cardiac pumping disorders</span> [Internet]. Indian J Pharm Pharmacol. 2025 [cited 2025 Sep 30];12(3):129-136. Available from: https://doi.org/10.18231/j.ijpp.30920.1758777742
APA
Menon, A. S., Kumar, K. (2025). Targeting aortic elasticity: A promising therapeutic avenue in congestive heart failure <span style="font-size: 1rem;">and cardiac pumping disorders</span>. Indian J Pharm Pharmacol, 12(3), 129-136. https://doi.org/10.18231/j.ijpp.30920.1758777742
MLA
Menon, Abhilash Santhosh, Kumar, Kailash. "Targeting aortic elasticity: A promising therapeutic avenue in congestive heart failure <span style="font-size: 1rem;">and cardiac pumping disorders</span>." Indian J Pharm Pharmacol, vol. 12, no. 3, 2025, pp. 129-136. https://doi.org/10.18231/j.ijpp.30920.1758777742
Chicago
Menon, A. S., Kumar, K.. "Targeting aortic elasticity: A promising therapeutic avenue in congestive heart failure <span style="font-size: 1rem;">and cardiac pumping disorders</span>." Indian J Pharm Pharmacol 12, no. 3 (2025): 129-136. https://doi.org/10.18231/j.ijpp.30920.1758777742