Indian Journal of Pharmacy and Pharmacology

Print ISSN: 2393-9079

Online ISSN: 2393-9087

CODEN : IJPPTK

Indian Journal of Pharmacy and Pharmacology (IJPP) open access, peer-reviewed quarterly journal publishing since 2014 and is published under auspices of the Innovative Education and Scientific Research Foundation (IESRF), aim to uplift researchers, scholars, academicians, and professionals in all academic and scientific disciplines. IESRF is dedicated to the transfer of technology and research by publishing scientific journals, research content, providing professional’s membership, and conducting conferences, seminars, and award programs. With more...

  • Article highlights
  • Article tables
  • Article images

Article statistics

Viewed: 793

PDF Downloaded: 336


Get Permission Heer, Sharma, Kour, and Sharma: Terminalia chebula possesses in vitro anticancer potential


Introduction

Terminalia chebula commonly known as Harad or Myrobalan and belonging to family Combretaceae, contains various biochemical compounds such as tannins, chebulinic acid, ellagic acid, gallic acid, punicalagin, flavonoids 1 and has been reported to possess anti-oxidant,2 anti-diabetic,3 anti-cancer,4 anti-mutagenic,5 anti-viral,6 anti-bacterial7, 8 and radioprotective9 properties. In vivo and in vitro anticancer potential of the ethanolic extract of T. chebula fruit was determined against Ehrlich Ascites Carcinoma (EAC) induced cancer in swiss albino mice. The anticancer activity was assessed using in vitro cytotoxicity, mean survival time, tumor volume and hematological studies. The high dose of extract (200 mg/kg, orally) significantly reduced the tumor growth which was demonstrated by increased lifespan of the mice and restoration of hematological parameters.10 Acetone extract of fruit was used to determine anticancer activity towards HeLa cell line. The viability of cells was determined by MTT (3,4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide) assay. Acetone extract (IC50 at 0.113 mg/ml) showed effective anticancer activity compared to that of cisplatin as control. The presence of polyphenolics in the extract was determined using HPLC method.11 Chebulinic acid, an ellagitannin widely present in T. Chebula showed many bioactivities including inhibition of cancer cell growth like human leukemia K562 cells.12 In-vitro anti-cancer activity of Chebulinic acid on colon adenocarcinoma HT-29 cancer cell line was studied. Cell lines were examined by using MTT cell growth inhibition assay. Results showed that the maximum percentage inhibition of cancer cell lines for chebulinic acid was found to be 41.2% at a dose of 200 μg/ml. Hence, chebulinic acid can be used as a potent anti-cancer agent.13 In the present investigation, the fruit of hard was evaluated against eight human cancer cell lines from six different tissues.

Materials and Methods

Chemicals

RPMI-1640 medium, dimethyl sulfoxide (DMSO), EDTA, fetal bovine serum (FBS), sulphorhodamine blue (SRB) dye, phosphate buffer saline (PBS), trypsin, gentamycin, penicillin and 5-flurouracil were purchased from Sigma Chemical Co., USA. All other chemicals were of high purity and obtained locally with the brand Sigma-Aldrich Chemicals Pvt. Ltd. and S.D. Fine Chemicals Pvt. Ltd. from Ramesh Traders, Panjthirthi-Jammu, J&K.

Fruit material and preparation of extracts

Terminalia was authenticated at site and enough quantity of fresh fruits were collected.The freshly collected fruits were chopped, shade-dried and ground into powdered form. The methanolic extracts of all the fruits were prepared by percolating the dried ground plant material (100 g) with 99% methanol and then concentrating it to dryness under reduced pressure. Stock solutions of 20 mg/ml were prepared by dissolving methanolic extract in DMSO.14 Stock solutions were prepared at least one day in advance and were not filtered. The microbial contamination was controlled by addition of 1% gentamycin in complete growth medium i.e. used for dilution of stock solutions to make working test solutions of 200 μg/ml.

Cell lines / cultures and positive controls

The human cancer cells were obtained from National Centre for Cell Science, Pune, India and National Cancer Institute, Frederick, USA. These human cancer cells were further grown and maintained in RPMI-1640 medium. Doxorubicin, 5-Fluorouracil, Mitomycin-C, Paclitaxel and Tamoxifen were used as positive controls.

In vitro assay for cytotoxic activity

Extracts were subjected to in vitro anticancer activity against various human cancer cell lines.15 In brief, the cells were grown in tissue culture flasks in growth medium at 37oC in an atmosphere of 5% CO2 and 90% relative humidity in a CO2 incubator (Hera Cell, Heraeus; Asheville, NCI, USA). The cells at sub-confluent stage were harvested from the flask by treatment with trypsin (0.05% trypsin in PBS containing 0.02% EDTA) and suspended in growth medium. Cells with more than 97% viability (trypan blue exclusion) were used for determination of cytotoxicity. An aliquot of 100 μl of cells (105 cells/ml) was transferred to a well of 96-well tissue culture plate. The cells were allowed to grow for 24 h. Extracts (100 μl/well) were then added to the wells and cells were further allowed to grow for another 48 h.

The anti-proliferative SRB assay which estimates cell number indirectly by staining total cellular protein with the dye SRB was performed to assess growth inhibition. The SRB staining method is simpler, faster and provides better linearity with cell number. It is less sensitive to environmental fluctuations and does not require a time sensitive measurement of initial reaction velocity.16 The cell growth was stopped by gently layering 50 μl of 50% (ice cold) trichloro acetic acid on the top of growth medium in all the wells. The plates were incubated at 4oC for 1 h to fix the cells attached to the bottom of the wells. Liquid of all the wells was then gently pipetted out and discarded. The plates were washed five-times with distilled water and air-dried. SRB 100 μl (0.4% in 1% acetic acid) was added to each well and the plates were incubated at room temperature for 30 min. The unbound SRB was quickly removed by washing the cells five-times with 1% acetic acid. Plates were air-dried, tris buffer (100 μl, 0.01 M, pH 10.5) was added to all the wells to solubilize the dye and then plates were gently stirred for 5 min on a mechanical stirrer. The optical density (OD) was recorded on ELISA reader at 540 nm. Suitable blanks (growth medium and DMSO) and positive controls (prepared in DMSO and distilled water) were also included. Each test was done in triplicate and the values reported were mean values of three experiments.

The cell growth was determined by subtracting average absorbance value of respective blank from the average absorbance value of experimental set. Percent growth in presence of test material was calculated as under:

  1. OD Change in presence of control = Mean OD of control – Mean OD of blank.

  2. OD Change in presence of test sample = Mean OD of test sample – Mean OD of blank.

  3. % Growth in presence of control = 100/OD change in presence of control.

  4. % Growth in presence of test sample = % Growth in presence of control × OD change in presence of test sample.

  5. % Inhibition by test sample = 100 – % Growth in presence of test sample.

Table 1

Growth inhibitory effect of Terminalia chebula fruit on human cancer cell lines

Extract

Conc. (µg/ml)

Human cancer cell lines from six different tissues

Breast

Breast

Colon

Colon

Lung

Melanoma

Ovarian

Prostate

MCF-7

T-47D

SW-620

HCT-116

A-549

MDA-MB-435

OVCAR- 5

PC-3

Growth Inhibition (%)

Methanolic

100

20

11

62

95

75

88

41

88

50

*

*

*

10

61

66

*

00

10

*

*

*

5

41

00

*

00

1

*

*

*

00

24

00

*

2

Positive controls

Conc. (µM)

Growth Inhibition (%)

Doxorubicin

1

-

-

71

-

-

-

-

-

5-Fluorouracil

20

-

-

-

65

-

-

70

-

Mitomycin-C

1

-

-

-

-

-

-

63

Paclitaxel

1

77

72

-

-

71

-

-

-

Tamoxifen

1

-

-

-

-

-

75

-

-

[i] Growth inhibition of 70% or more in case of extracts has been indicated in bold numbers

[ii] Mark (-) indicates that particular human cancer cell line was not treated with that particular positive control

[iii] Symbol (*) means not further evaluated / calculated

Figure 1

Terminalia chebula (harad)

https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/395a3c52-965f-4863-8ff2-2d949ee8f14aimage1.png
Figure 2

96-Well TCP after addition of SRB dye

https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/395a3c52-965f-4863-8ff2-2d949ee8f14aimage2.png
Figure 3

96-Well TCP afteraddition of tris buffer

https://s3-us-west-2.amazonaws.com/typeset-prod-media-server/395a3c52-965f-4863-8ff2-2d949ee8f14aimage3.png

Results

Terminalia chebula was selected from Jammu region for testing in vitro anticancer efficacy. This plant has numerous medicinal properties and is used in the traditional system of medicine in India. Systematic bioassays were performed against eight human cancer cell lines from six different origins, which were obtained from National Cancer Institute, Frederick, U.S.A and National Centre for Cell Science, Pune, India. The human cancer cell lines along with particular tissues were Breast: MCF-7, T-47D; Colon: HCT-116, SW-620; Lung: A-549; Melanoma: MDA-MB-435; Ovary: OVCAR-5; Prostate: PC-3. Standard protocols as given in “Materials and Methods” were employed for the extraction of powdered dried plant material and the methanolic extract was prepared / employed for bioassay. Standard drugs for cancer that served as positive controls in the present investigation included the Doxorubucin, 5-Flurouracil, Mitomycin-C, Paclitaxel and Tamoxifen. Results revealed that the methanolic extract from the fruit part of Terminalia chebula showed in vitro anticancer effect against four human cancer cell lines. The fruit displayed 95% growth inhibition of colon (HCT-116) cancer cell line, 88% growth inhibition of melanoma (MDA-MB-435) cancer cell line, 88% growth inhibition of prostrate (PC-3) cancer cell line and 75% growth inhibition of lung (A-549) cancer cell line. Further, the methanolic extract of harad showed 20% growth inhibition of MCF-7 - a cell line from breast origin, 11% growth inhibition of T-47D - a cell line from breast origin, 62% growth inhibition of SW-620 - a cell line from colon origin and 40% growth inhibition of OVCAR-5 - a cell line from ovary origin, which was not considered active. When evaluated at lower concentrations, the fruit extract did not showed significant growth inhibition against any of the human cancer cell lines.

Discussion

Cancer is becoming a big load on families and economies. The cancer cases are on rise in Jammu and Kashmir with lung cancer becoming most prominent due to smoking. Cancer research has, therefore, become a major area of scientific research supporting the foundations of modern biology to a great extent. Chemotherapy is a major treatment modality for cancer, but most of the drugs used in cancer chemotherapy exhibit cell toxicity and can induce genotoxic, carcinogenic and teratogenic effects in non tumor cells. Therefore, the research for alternative drugs of natural origin, which are less toxic, endowed with fewer side effects and more potent in their mechanism of action, is an important research line. Medicinal plants have long history for the treatment of various diseases including cancer and active principles from these plants are used to control the advance stages of malignancies in clinical settings. These natural products now have been contemplated of exceptional value in the development of effective anticancer drugs with minimum host cell toxicity. A number of exciting researches suggest that traditional medicinal plants contain an abundance of polyphenolic compounds, terpenoids, sulphur compounds, pigments and other natural antioxidants, that have been associated with protection from or treatment of conditions such as cancer.

Therefore, natural products have been a prime source of highly effective conventional drugs for the treatment of many forms of cancer. Accordingly, this research work has two fold importance: First, in Jammu subtropics, the in vitro anticancer efficiency of harad against colon, melanoma, prostrate and lung cancer cells have been reported and secondly, the results from the investigation forms a good basis for the selection of this plant from Jammu region for further phytochemical and pharmacological analysis to offer new drugs from natural sources which would be less toxic and more potent for the efficient management of cancer.

Conclusion

This promising methanolic extract from the fruit part of harad can be explored for lead molecule in the development of anticancer drugs to provide a great promise and service to cancer patients. Further, isolation and characterisation of active ingredients with anticancer potential is required from this particular traditional medicinal plant.

Abbreviations

  1. EAC: Ehrlich Ascites Carcinoma

  2. HPLC: High-performance liquid chromatography

  3. SRB: sulphorhodamine blue

  4. FBS: Fetal Bovine Serum

  5. PBS: Phosphate Buffer Saline

  6. DMSO: Dimethyl Sulfoxide

Source of Funding

None.

Conflict of Interest

None.

References

1 

S D Prakash S Satya N Vangalapati Extraction of chebulinic acid from Terminalia chebula species by soxhlet extractor - An experimental and modelling studiesAsian J Biochem Pharm Res201221706

2 

H Y Cheng T Lin K Yu C Yang C Lin Antioxidant and free radical scavenging activities of Terminalia chebulaBiol Pharm Bull200326913315

3 

M C Sabu R Kuttan Anti-diabetic activity of medicinal plants and its relationship with their antioxidant propertyJ Ethnopharmacol200281215560

4 

A Saleem M Husheem P Harkonen K Pihlaja Inhibition of cancer cell growth by crude extract andthe phenolics of Terminalia chebula fruitJ Ethnopharmacol200281332736

5 

S Kaur S Arora K Kaur S Kumar In vitro antimutagenic activity of Triphala, an Indian herbal drugFood Chem Toxicol200240452734

6 

M J Ahn CY Kim JS Lee TG Kim SH Kim CK Lee Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensisPlanta Med20026854579

7 

H G Kim JH Cho EY Jeong JH Lim SH Lee HS Lee Growth inhibitory activity of active component from Terminalia chebula fruits against intestinal bacteriaJ Food Prot200669922059

8 

A Bag SK Bhattacharyya P Bharati NK Pal R Chattopadhyay Evaluation of antibacterial properties of Terminalia chebulaAfr J Plant Sci200932259

9 

N M Gandhi CK Nair Radiation protection by Terminalia chebula: Some mechanistic aspects. Mol Celullar Biochem2005277438

10 

R Ahuja N Agrawal A Mukerjee Evaluation of anticancer potential of Terminalia chebula fruits against ehrlich ascites carcinoma induced cancer in miceJ Sci Innov Res20132354954

11 

M G Jinukuti A Giri Anticancer activity of acetone and methanol extracts of Terminalia chebula Retz and Withania somnifera (Linn.) Dunal on HeLa cell line. Annals of Phytomedicine201548892

12 

Z C Yi Z Wang H X Li MJ Liu RC Wu XH Wang Effects of chebulinic acid on differentiation of human leukemia K562 cellsJ Acta Pharmacol Sinica20042522318

13 

M Vangalapati S Prakash S Satyanandam In vitro anticancer studies of chebulinic acid on colon adenocarcinoma HT-29 cell linesInt J Pharm Pharm Sci201355823

14 

O Kandil NM Radwan AB Hassan A Amer HA El-Banna W Amer Extracts and fractions of Thymus capitatus exhibit antimicrobial activitiesJ Ethanopharmacol19944597111

15 

A Monks D Scudiero P Skehan R Shoemaker K Paull D Vistica Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell linesJ National Cancer Institute199183115766

16 

P Skehan R Storeng D Scudiero A Monks J Mcmohan D Vistica New colorimetric cytotoxicity assay for anticancer-drug screeningJ National Cancer Ins19908213110712



jats-html.xsl


This is an Open Access (OA) journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Article type

Original Article


Article page

242-246


Authors Details

Arti Heer, Vikas Sharma, Navneet Kour, Shivangi Sharma


Article History

Received : 18-05-2022

Accepted : 23-07-2022


Article Metrics


View Article As

 


Downlaod Files